
A smoλ theory of structural and nominal typing

Emmanouil Krasanakis - maniospas@hotmail.com

Version 1 - June 17, 2025

Abstract

Structural and nominal typing are two significantly different systems
for organizing data types. The former simplifies program writing by
reusing the same data layout across different types. It is also closer to
performant assembly instructions that do not account for high-level se-
mantics. On the other hand, nominal typing introduces safety guarantees
by enforcing relationships between data stored in different segments of the
layout. This paper introduces a theoretical comparison and combination
of the two systems, leading to the implementation of the smoλ language.
In particular, analysis conducted in set theory to capture the full capa-
bilities of structural typing shows that nominal types are severely limited
in terms of expressiveness. A structural type system is proposed to both
match primitive types (e.g., integers, doubles) and make nominal ones be-
have as pseudo-primitives with safety guarantees. The system works by
treating type names as primitive types and structurally unpacking them.

1 Introduction

When I first started on this monograph, my goal kept changing between writing
a proper paper to creating formal verification of the smoλ language. In the
end, a third option appealed to me: a short discourse on structural vs nominal
typing. This echoes past attempts at unifying the two systems [1, 2, 3], but
there is something new: working with set theory to treat data structure as the
most important. A retroactive justification is that structure is inherently more
expressive than names, and therefore it makes sense to keep the benefits of
primitive tuple representations by eschewing lambda calculus or linear logic.1

Before going further, differences between the two compared systems can
be summarized in structural memory layouts being intrinsic to how low-level
programming languages treat memory vs referencing types based only on their
names -hence being nominal - to achieve high-level safety.2 For example, a
nominal string type can ensure that the size segment always corresponds to the
amount of allocated memory referenced in the pointer segment, without pairing

1Category theory may be a valid generalization but it does not support set cardinality.
2This is partially orthogonal to the well-explored distinction of dynamic vs static type

checking, though there are many common axes.

1

arbitrary pointers to invalid sizes. Conversely, the following smoλ language
program demonstrates structural typing, where the two numeric inputs to norm
are treated as the layout of Point2D. Notice usage of the language’s currying
notation where arg : fun(other) translates to fun(arg, other).

1 @include std.builtins

2 @include std.math

3
4 smo Point2D(f64 x, f64 y) -> x,y // basically a type

5 smo norm(Point2D p)

6 sqx = p.x:pow (2.0)

7 sqy = p.y:pow (2.0)

8 -> pow(sqx+sqy , 0.5)

9
10 service main()

11 m = norm (3.0, 4.0)

12 print(m) // prints 5.0

13 -- // end without return

Listing 1: Structural typing example

Notation

In analysis below, × is the cartesian product between sets and ⊕ the ordered
apposition of tuples, e.g., (t1, t2)⊕ (t3, t4) = (t1, t2, t3, t4). A

∗ is the Kleene star
notation. Capital letters denote sets, calligraphy is added for sets of sets, and
lower letters represent functions.

2 Nominal as a less expressive structural typing

Consider a discrete setoid3 L whose members will later play the role of nominal
type names. Also consider a set containing unary sets of names L = {{l} : l ∈ L}
and a superset L ⊆ A0 that contains that and potentially more sets that play the
role of primitive types. The superset is not necessarily a setoid. For instance,
L = {1, 2, . . . } or a countable set of strings, whereas A0 could also contain the
sets of integers, reals, or their discrete (e.g., 64-bit) counterparts.

Theoretically, the setoid of names could have finite or infinite cardinality. In
practice, |L| will not only be finite but also upper bounded by some software
development cost (measured in time, effort, etc.); costs scale monotonically by
at least a fixed overhead compared to the amount of implemented code. So, by
considering that at least one code segment needs to be added for each name
when implementing corresponding nominal types later, there is an upper bound
to how many labels are defined. Still, it is important to get a sense of expressive
power as the cardinality of the type system’s distinct expressions.

We will work with the smoλ concept called runtypes, which are essentially
functions whose output tuples act as types. In language examples, they are

3A discrete setoid is a set equipped with an equivalence relation ∼ between its members
and it holds that |{l′ ∈ l : l′ ∼ l}| = 1 for all l ∈ L. Treat ∼ identically to =.

2

defined with the smo keyword and their outputs are treated as either tuples
with named elements or single values if there is only one element. Runtypes
are inherently structural, but also admit nominal variations that are associated
with names, as well as a type system that preserves safety (more later).

Definition 1. A runtype is a function over tuples of primitive types:

t : I → A where I, A ∈ A∗
0

For brevity, t(·) will represent the set of all potential values t(I) ⊆ A given
that I is the input space of the runtype. Also, let T be the set of all runtypes,
and annotate the set of non-name primitive identities as:

T0 = {t : A → A, t(x) = x : A0 − L}

The next definition establishes that a modeling comprising several nominal
runtypes represents the act of matching them to names. Then, the two accom-
panying theorems show that it is impossible to represent all structural runtypes
with nominal variations. This holds true under the premise that structural typ-
ing has access to the names, for example during compile time checks that will
be later eliminated (as smoλ does), by reflection that exposes compile-time in-
formation to the runtime or, even more ubiquitously, by languages supporting
runtime polymorphism.

When one selects or implements a specific collection of nominal runtypes to
serve as modeling, they effectively establish a restriction on expressive power
that enforces certain semantics. This is similar to constructing a domain-specific
language (DSL) for safe operations, where safety corresponds to tying a specific
runtype output to the process of generating it - that in turn could correspond
to practices like safe memory management. New nominal types may also be
obtained by combining previous ones, but we are ultimately restricted by our
(in)ability to express more new names from the label set L.

More generally, the last theorem reveals that the collection of all runtypes
will always be at least one aleph -or, in terms of logic theory, an abstraction
order- greater than nominal ones. In other words, they demonstrate significantly
reduced expressive power, limited by the very need to name them individually.
Conversely, much more complex structural types can be quickly obtained by
combining simpler ones.

Definition 2. A set Tnom will be called a nominal modeling if there exists
bijection nom : Tnom → nom(Tnom) ⊆ L, and the set’s members, which will be
called nominal runtypes, take the form

t : {nom(f)} × I → {nom(f)} ×A where I, A ∈ A∗
0

Theorem 1. Any set Tb ⊆ T with |Tb| ≤ |L| generates a modeling of nominal
runtypes for some nomb : Tb → L:

Tnom = {t ∈ T : t(nom(t)⊕ i) = (nom(t)⊕ tb(i)), nom(t) = nomb(tb)}

3

Proof. It suffices to show that a bijection nomb : Tb → nomb(Tb) ⊆ L exists,
which holds by definition for finite sets. It also exists for infinite sets given the
axiom of choice.

Theorem 2. For infinite names, 2|Tnom| ≤ |T |. For finite non-zero names, T
is at least countable.

Proof. For infinite names we get |T | ≥ |A∗
0|2 ≥ |A∗

0| ≥ 2|A0| ≥ 2|L| ≥ 2|Tnom|.
For finite names, as long as at least one exists, A∗

0 is countable.

Example

As an example of how nominal types can be expressed as part of a structural
type system, consider the following smoλ code. We first define two runtypes that
construct a point from Cartesian and circular coordinates and corresponding
norm functions. I will not go into type inference details here but, to apply
the proper version of normalization, the compiler should be able to distinguish
between which point type is analyzed. To make the distinction possible, the
nom keyword is provided.

This is similar to the nom function in that it automatically creates a corre-
sponding name and substitutes itself with a type of a set containing only that
name. Under the hood the name is represented as a unique integer, and the
language allows setting it only as the first keyword. To make the calling conven-
tion similar to other runtypes, which can be used to zero-instantiate nameless
arguments, nom can also be used as a first argument. In this which case, it
automatically matches the name of the runtype being called.

Given that nom’s set/type is different in Point2D and Point2R, there is now
a clear distinction between the two despite having the same trailing structure
(two doubles). From a language design standpoint, smoλ matches its syntax
to this section’s theory in favor of implementation transparency. It also goes
a step further in optimizing away any uneeded operations, so nom-based type
checking occurs at compile time but remains a zero-cost abstraction without
running time impact. Lastly, the example contains a Field definition that is
unused but demonstrates how nominal types can also depend on others of the
same kind. Yet, under the hood, the name is still obtained from the same
number sequence and collective development effort.

1 @include std.builtins

2 @include std.math

3
4 smo Point2D(nom , f64 x, f64 y) -> @new // tuple of all arguments

5 smo Point2R(nom , f64 r, f64 theta) -> @new

6 smo Field(nom , Point2D start , Point2D end) -> @new

7 smo norm(Point2D p)

8 sqx = p.y:pow (2.0)

9 sqy = p.x:pow (2.0)

10 -> pow(sqx+sqy , 0.5)

11 smo norm(Point2R p) -> p.r

12
13 service main()

4

14 pd = nom:Point2D (3.0, 4.0)

15 pr = nom:Point2R (1.0, 180.0)

16 print(pd:norm) // prints 5.0

17 print(pr:norm) // prints 1.0

Listing 2: Nominal semantics in structural declarations

3 Safety of nominal typing

We thus verified the limitations of the naming scheme. But we also need to show
its advantages. Mainly, can we use it to guarantee safety in interpreting safety-
critical data in the same way every time? The next definition is a requirement for
logical safety in that sense. That is, the output of the same nominal runtypes
cannot be reinterpreted, guarding the original logical or programming safety
they imposed.

A type declaration system that admits that unique interpretation is also
shown. The system consists of runtype inputs incrementally being constructed
from different runtypes. These results are trivial given that nom is essentially
a way for naming our runtypes; the novelty lays in interweaving nominal and
structural understanding in the same types.

Definition 3. A set of runtypes will be called safe under nominal modeling
Tnom only if any runtype’s t output can be uniquely decomposed into

t(·) = a1(·)× a2(·)× . . . where a1, a2, · · · ∈ T0 ∪ Tnom

Proof. Trivial given that nominal runtypes require the corresponding name

Theorem 3. The following recursively defined set of runtypes is safe

Tclosure = T0 ∪ Tnom ∪ {t : I → A : I, A ∈ T ∗
closure}

Finally, let us consider the cost of safety. There is no cost in expressive power
as long as we provide nominal runtypes for all names! Note that the equality
is in terms of infinity cardinalities, so there may be some runtypes that are not
expressible, but we can theoretically set up a bijection between Tclosure to T to
retrieve the missing ones; that could be hard to find but it exists.

Theorem 4. If |L| = |Tnom| then |Tclosure| = |T |

Proof. It holds that Tclosure ⊆ T therefore |Tclosure| ≤ |T |. But it also holds that
|Tclosure| ≥ |((T0 ∪ Tnom)2)∗| = |(T0 ∪ Tnom)∗| = |(T0 ∪ L)∗| = |A∗

0| = |T |.

Example

As an example of safety, look at part of smoλ’s vector implementation in the
standard library. This uses @body and @finally to embed C++ code for code
running and resource deallocation respectively, as well as the fail command to

5

gracefully exit the currently running service - services are runtypes with an ex-
tra error handling field and automatic resource deallocation. The important
aspect of this implementation is that all operations process the nominal vector
runtype that ties the correct size to allocated memory but still exhibit structural
characteristic for other fields. For demonstration purposes, the implementation
is accompanied by a structural runtype call. In general, vec imposes critical
safety considerations, where multiple features like this can be combined in ex-
ponentially many safe usage scenarios.

1 @include std.builtins

2
3 smo vec(nom , ptr contents , u64 size) -> @new

4 smo vec(u64 size)

5 @body{ptr contents = new f64[size]();}

6 @finally contents {if(contents)delete [] (f64*) contents;

contents =0;}

7 -> nom:vec(contents , size)

8 smo len(vec v) -> v.size

9 smo at(vec v, u64 pos) // overloads []

10 if pos>=v.size -> fail("Vec out of bounds")

11 @body{f64 value = ((f64*) v__contents)[pos];}

12 -> value

13 smo set(vec v, u64 pos , f64 value)

14 if pos>=v.size -> fail("Vec out of bounds")

15 @body {((f64*) v__contents)[pos] = value;}

16 -> v

17 smo dot(vec x1, vec x2)

18 if x1.size!=x2.size -> fail("Incompatible vec sizes")

19 &sum = 0.0 // mutable

20 &i = 0

21 while i<x1.size

22 sum = sum+x1[i]*x2[i]

23 i = i+1

24 -- // end block

25 -> sum

26
27 smo one_hot(u64 idx) -> idx , 1.0

28 service main()

29 x = vec (1000)

30 x:set(1 :one_hot)

31 x:set(5, 2.0)

32 print(x:dot(x)) // prints 5.0

Listing 3: Nominal type safety

4 Takeaways

Before closing this short manuscript, let us reexamine what we learned. First,
we have a unifying framework to treat nominal typing as a case of structural
typing with less expressive power; it is only a matter of uniquely “naming”
a subset of producible structural types, that is, creating a bijection between
that subset and name candidates. As a side-effect of the analysis we also got

6

a theoretical model that can analyze uncountable names, if that matters in the
future.

Second, we saw what a type system that uses both nominal and structural
types while maintaining nominal constraints looks like; basically, it consists of a
simple composition of flattened type arguments, with nominal labels interweaved
to match respective positions. This could be optimized away by compilers or,
equivalently, nominal types can be treated as new primitives. Finally, such
a type system does not lose expressing power compared to an unconstrained
counterpart that uses an equal number of labels.

Going forward, I believe that adopting similar combinations of structural
and nominal typing can help produce more semantically rich programming lan-
guages that retain safety guarantees and speedy execution. For example, if an
exponential number of nominal types is required to reproduce the expressiveness
of fewer structural ones (e.g., because they need to be explicitly combined), it
may be preferable to adopt a structural representation of type segments without
critical safety concerns.

Acknowledgements

ChatGPT4o helped a lot with formatting and proofreading to point out areas
of improvement.

Code

Find smoλ’s repository at https://github.com/maniospas/smol .

References

[1] T. Kühne, “Unifying nominal and structural typing,” Software & Systems
Modeling, vol. 18, pp. 1683–1697, 2019.

[2] D. Malayeri and J. Aldrich, “Integrating nominal and structural subtyping,”
in European Conference on Object-Oriented Programming. Springer, 2008,
pp. 260–284.

[3] F. Muehlboeck and R. Tate, “Transitioning from structural to nominal code
with efficient gradual typing,” Proceedings of the ACM on Programming
Languages, vol. 5, no. OOPSLA, pp. 1–29, 2021.

7

